
Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

Assessment Task 1

Evil Hangman

Time allowed: 1 week
Due date: Week 10, Term 1
Marks: 35
Weighting: 10%

Outcomes to be assessed:
H1.3 describes how the major components of a computer system store and manipulate data
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates their

effectiveness
H5.2 creates and justifies the need for the various types of documentation required for a software Solution
H5.3 selects and applies appropriate software to facilitate the design and development of software Solutions
H6.2 communicates the processes involved in a software solution to an inexperienced user

This is an individual task

You are required to submit:

• Algorithms of all the subroutines
• Desk check of one game
• Structure chart (the structure chart activity has already given you a start)
• Screen grabs demonstrating the game
• Source code
• Final build (.exe)
• Self evaluation

Required material http://www.therevelation.co.uk/sdd/dictionary.txt

The structure chart task, array task and file task all contribute directly to this assignment,
review your work on those tasks to give you the key elements.

Background

It's hard to write computer programs to play games. When we as humans sit down to play a game, we
can draw on past experience, adapt to our opponents' strategies, and learn from our mistakes.
Computers, on the other hand, blindly follow a preset algorithm that (hopefully) causes it to act
somewhat intelligently. Though computers have bested their human masters in some games, most
notably checkers and chess, the programs that do so often draw on hundreds of years of human
game experience and use extraordinarily complex algorithms and optimizations to out calculate their
opponents.

While there are many viable strategies for building competitive computer game players, there is one
approach that has been fairly neglected in modern research – cheating. Why spend all the effort trying
to teach a computer the nuances of strategy when you can simply write a program to play dirty and
win handily all the time? In this assignment, you will build a mischievous program that bends the rules
of Hangman to trounce its human opponent time and time again. In doing so, you'll cement your skills

http://www.therevelation.co.uk/sdd/dictionary.txt�

Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

with abstract data types and iterators, and will hone your general programming savvy. Plus, you'll end
up with a piece of software which will be highly entertaining. At least, from your perspective.

In case you aren't familiar with the game Hangman, the rules are as follows:
1. One player chooses a secret word, then writes out a number of dashes equal to the word length.
2. The other player begins guessing letters. Whenever she guesses a letter contained in the hidden
word, the first player reveals each instance of that letter in the word. Otherwise, the guess is wrong.
3. The game ends either when all the letters in the word have been revealed or when the guesser has
run out of guesses.

Fundamental to the game is the fact the first player accurately represents the word she has chosen.
That way, when the other players guess letters, she can reveal whether that letter is in the word. But
what happens if the player doesn't do this? This gives the player who chooses the hidden word an
enormous advantage. For example, suppose that you're the player trying to guess the word, and at
some point you end up revealing letters until you arrive at this point with only one guess remaining:

D O – B L E

There are only two words in the English language that match this pattern: “doable” and “double.” If the
player who chose the hidden word is playing fairly, then you have a fifty-fifty chance of winning this
game if you guess 'A' or 'U' as the missing letter. However, if your opponent is cheating and hasn't
actually committed to either word, then there is no possible way you can win this game. No matter
what letter you guess, your opponent can claim that she had picked the other word, and you will lose
the game. That is, if you guess that the word is “doable,” she can pretend that she committed to
“double” the whole time, and vice-versa.

Let's illustrate this technique with an example. Suppose that you are playing Hangman and it's your
turn to choose a word, which we'll assume is of length four. Rather than committing to a secret word,
you instead compile a list of every four-letter word in the English language. For simplicity, let's
assume that English only has a few four-letter words, all of which are reprinted here:

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX

Now, suppose that your opponent guesses the letter 'E.' You now need to tell your opponent which
letters in the word you've “picked” are E's. Of course, you haven't picked a word, and so you have
multiple options about where you reveal the E's. Here's the above word list, with E's highlighted in
each word:

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX

If you'll notice, every word in your word list falls into one of five “word families:”

• ----, which contains the word ALLY, COOL, and GOOD.
• -E--, containing BETA and DEAL.
• --E-, containing FLEW and IBEX.
• E--E, containing ELSE.
• ---E, containing HOPE.

Since the letters you reveal have to correspond to some word in your word list, you can choose to
reveal any one of the above five families. There are many ways to pick which family to reveal –
perhaps you want to steer your opponent toward a smaller family with more obscure words, or toward
a larger family in the hopes of keeping your options open. In this assignment, in the interests of

Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

simplicity, we'll adopt the latter approach and always choose the largest of the remaining word
families. In this case, it means that you should pick the family ----. This reduces your word list down to
ALLY COOL GOOD
and since you didn't reveal any letters, you would tell your opponent that his guess was wrong.

Let's see a few more examples of this strategy. Given this three-word word list, if your opponent
guesses the letter O, then you would break your word list down into two families:
• -OO-, containing COOL and GOOD.
• ----, containing ALLY.

The first of these families is larger than the second, and so you choose it, revealing two O's in the
word and reducing your list down to

COOL GOOD

But what happens if your opponent guesses a letter that doesn't appear anywhere in your word list?
For example, what happens if your opponent now guesses 'T'? This isn't a problem. If you try splitting
these words apart into word families, you'll find that there's only one family – the family ---- in which T
appears nowhere and which contains both COOL and GOOD. Since there is only one word family
here, it's trivially the largest family, and by picking it you'd maintain the word list you already had.
There are two possible outcomes of this game. First, your opponent might be smart enough to pare
the word list down to one word and then guess what that word is. In this case, you should
congratulate him – that's an impressive feat considering the scheming you were up to! Second, and
by far the most common case, your opponent will be completely stumped and will run out of guesses.
When this happens, you can pick any word you'd like from your list and say it's the word that you had
chosen all along. The beauty of this setup is that your opponent will have no way of knowing that you
were dodging guesses the whole time – it looks like you simply picked an unusual word and stuck
with it the whole way.

Assignment

Your assignment is to write a computer program which plays a game of Hangman using this “Evil
Hangman” algorithm. In particular, your program should do the following:

• Read the file dictionary.txt, which contains the full contents of the Official Scrabble Player's
Dictionary, Second Edition. This word list has over 120,000 words, which should be more
than enough for our purposes.

• Randomly choose a word length between 4 and 8 characters.

• Prompt the user for a number of guesses, which must be an integer greater than zero.

• Play a game of Hangman using the Evil Hangman algorithm, as described below:

1. Construct a list of all words in the English language whose length matches the random
length.

2. Print out how many guesses the user has remaining, along with any letters the player
has guessed and the current blanked-out version of the word. If the user chose earlier to
see the number of words remaining, print that out too.

3. Prompt the user for a single letter guess, reprompting until the user enters a letter that
she hasn't guessed yet. Make sure that the input is exactly one character long and that
it's a letter of the alphabet.

4. Partition the words in the dictionary into groups by word family.

Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

5. Find the most common “word family” in the remaining words, remove all words from the
word list that aren't in that family, and report the position of the letters (if any) to the user.
If the word family doesn't contain any copies of the letter, subtract a remaining guess
from the user.

6. If the player has run out of guesses, pick a word from the word list and display it as the
word that the computer initially “chose.”

7. If the player correctly guesses the word, congratulate her.
• Ask if the user wants to play again and loop accordingly.

It's up to you to think about how you want to partition words into word families. Think about what data
structures would be best for tracking word families and the master word list. Would an associative
array work? How about a stack or queue? Thinking through the design before you start coding will
save you a lot of time and headache.

Advice, Tips, and Tricks

There is no “right way” to go about writing this program, but some design decisions are much better
than others (e.g. you can store your word list in a stack or map, but this is probably not the best
option). Here are some general tips and tricks that might be useful:

1. Letter position matters just as much as letter frequency. When computing word families, it's not
enough to count the number of times a particular letter appears in a word; you also have to consider
their positions. For example, “BEER” and “HERE” are in two different families even though they both
have two E's in them. Consequently, representing word families as numbers representing the
frequency of the letter in the word will get you into trouble.

2. Don't explicitly enumerate word families. If you are working with a word of length n, then there are
2n possible word families for each letter. However, most of these families don't actually appear in the
English language. For example, no English words contain three consecutive U's, and no word
matches the pattern E-EE-EE--E. Rather than explicitly generating every word family whenever the
user enters a guess, see if you can generate word families only for words that actually appear in the
word list. One way to do this would be to scan over the word list, storing each word in a table mapping
word families to words in that family.

Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

Student feedback sheet

Student’s name:

Documentation, observation and final system will be used to determine the following:

H1.3 describes how the major components of a computer system store and manipulate data

• Utilises variables and arrays correctly
• Verifies data entry
• Efficient algorithms

Comments

/5 marks

H4.1 identifies needs to which software solutions are appropriate

• Uses appropriate software to create a solution
• Presents software for use in a suitable environment

Comments

/5 marks

H4.2 applies appropriate development methods to solve software problems

• Uses algorithms covered in the course
• Provides suitable documentation outlining the solution

Comments

/5 marks

H4.3 applies a modular approach to implement well structured software solutions and evaluates their

effectiveness
• Sub routines are utilised to create efficient code
• Correct methods of passing variables is used
• Desk checking and software testing is evident

Comments

/5 marks

H5.2 creates and justifies the need for the various types of documentation required for a software Solution

• Documentation is complete
• Documentation identifies all necessary procedures and inputs and outputs
• Code is commented and clearly identified by the student

Software Design and Development - HSC

Adapted from http://nifty.stanford.edu/2011/schwarz-evil-hangman/

Comments

/5 marks

H5.3 selects and applies appropriate software to facilitate the design and development of software Solutions

• Evidence of online systems being utilised to create final product
• Suitable IDE is used to debug and compile

Comments

/5 marks

H6.2 communicates the processes involved in a software solution to an inexperienced user

• Instructions within the game are clear

Comments

/5 marks

Total marks: /35 marks

	Assessment Task 1
	Background
	Assignment
	Advice, Tips, and Tricks
	Student feedback sheet

